Jurnal JISIILKOM, 2 (1) (2024), ISSN: 3025-4868 (Online)

Jurnal JISIILKOM (Jurnal Inovasi Sistem Informasi & Ilmu Komputer)

Journal homepage: https://jisiilkom.org

Metode Backpropagation Polak Ribiere Untuk Memprediksi Angka Harapan Lama Sekolah Provinsi Sulawesi Barat

Muhammad Rahmansyah Siregar¹, P.P.P.A.N.W.Fikrul Ilmi R.H.Zer²

¹Program Studi Teknik Informatika, STIKOM Tunas Bangsa, Indonesia ²Program Studi Sistem Informasi, STIKOM Tunas Bangsa, Indonesia

Article Info

Article history:

Received Jan 18, 2024 Revised Jan 30, 2024 Accepted Feb 10, 2024

Kata Kunci:

Prediksi Angka Harapan Lama Sekolah Jaringan Syaraf Tiruan Polak Ribiere Backpropagation

Keywords:

Prediction
Expected Years of Schooling
Artificial Neural Network
Polak Ribiere
Backpropagation

ABSTRAK

Angka Harapan Lama Sekolah (AHLS) menggambarkan estimasi rata-rata tahun yang diharapkan bagi seorang siswa untuk menyelesaikan tingkat pendidikan tertentu. AHLS dapat digunakan untuk mengetahui kondisi pembangunan sistem pendidikan di berbagai jenjang. Tidak adanya prediksi AHLS dapat menghambat perencanaan strategis dan alokasi sumber daya yang efektif. Oleh karena itu, perlu untuk memprediksi AHLS dengan akurasi yang tinggi. Untuk meningkatkan akurasi prediksi AHLS, pendekatan *Backpropagation* dapat menjadi solusi yang efektif. Pada penelitian ini peneliti menggunakan metode *Backpropagation* metode *Polak Rieber*. Peneliti menggunakan beberapa pola arsitektur untuk mencari nilai yang optimal antara lain pola 3-5-1, 3-10-1 dan 3-5-10-1. Dari hasil *Backpropagation Polak Rieber* didapatkan pola 3-5-1 adalah hasil analisis tertingi dengan akurasi 67% dan MSE sebesar 0.000744, dan dapat digunakan sebagai pola untuk memprediksi data AHLS.

ABSTRACT.

Expected Years of Schooling (EYS) refers to the average number of years a student is expected to complete for a particular level of education. EYS is a vital indicator of the educational system's development at various levels. The absence of EYS estimates can impede strategic planning and effective allocation of resources. Therefore, it is crucial to predict EYS with high accuracy. The Backpropagation approach can be an effective solution to improve the accuracy of EYS predictions. In this study, the researcher used the Polak Rieber backpropagation method and employed various architectural patterns, 3-5-1, 3-10-1 and 3-5-10-1. The analysis of the Polak Rieber backpropagation results revealed that the pattern 3-5-1 had the highest accuracy of 67% and an MSE of 0.000744. Therefore, it can be utilized as a pattern to predict EYS data.

This is an open access article under the CC BY-NC license.

Corresponding Author:

Muhammad Rahmansyah Siregar,

¹Program Studi Teknik Informatika, STIKOM Tunas Bangsa,

Jl. Jend. Sudirman, Blok A No. 1,2&3, Siantar Barat, Pematang Siantar, Indonesia.

Email: rahmansyahsiregar77@gmail.com

1. PENDAHULUAN

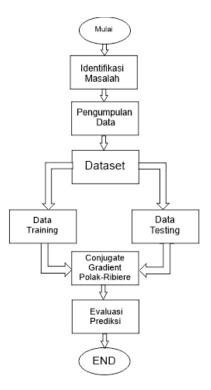
Pendidikan merupakan pilar utama pembangunan suatu negara, memegang peran strategis dalam membentuk fondasi sumber daya manusia yang berkualitas (Irawan, 2020). Kontribusi pendidikan tidak hanya mencakup peningkatan kapasitas individu, tetapi juga menjadi kunci untuk memajukan aspek ekonomi, sosial, dan budaya (Siska & Rudagi, 2021)(Sujana, 2019). Oleh karena itu, pemahaman mendalam terhadap kualitas pendidikan menjadi imperatif, dan Angka Harapan Lama Sekolah (AHLS) muncul sebagai indikator kritis dalam mengevaluasi capaian sistem pendidikan (Muhammad, 2019). AHLS menggambarkan estimasi rata-rata tahun yang diharapkan bagi seorang siswa untuk menyelesaikan tingkat pendidikan tertentu

(Mahya & Widowati, 2021). Diasumsikan bahwa peluang anak tersebut akan tetap bersekolah pada umurumur berikutnya sama dengan peluang penduduk yang bersekolah per jumlah penduduk untuk umur yang sama saat ini (Mayapada et al., 2022). AHLS dapat digunakan untuk mengetahui kondisi pembangunan sistem pendidikan di berbagai jenjang (Candrawati et al., 2021). Dengan menganalisis AHLS, kita dapat merinci sejauh mana pemerintah mampu memberikan akses pendidikan yang merata dan memberdayakan individu untuk mencapai potensinya.

Pada konteks ini, penting untuk melihat urgensi kajian prediksi AHLS. Prediksi merupakan bagian dari awal suatu proses pengambilan suatu keputusan (Hayami et al., 2021). Metode prediksi dapat diandalkan sebagai kunci untuk memberikan pandangan terkait perkembangan pendidikan di masa depan. Dengan memahami perkembangan AHLS, pihak berkepentingan dapat merancang kebijakan yang responsif, merespons tantangan dan peluang yang muncul dalam dunia pendidikan. Dalam rangka meningkatkan akurasi prediksi AHLS, pendekatan Backpropagation dapat menjadi solusi yang efektif. Algoritma Backpropagation merupakan algoritma dari Jaringan Syaraf Tiruan yang banyak dipakai dalam menyelesaikan permasalahan yang rumit berkaitan dengan identifikasi, prediksi, dan pengenalan pola (Dewi et al., 2022). Algoritma Backpropagation merupakan salah satu prosedur yang paling populer, efektif, dan mudah dipelajari pada jaringan multilayer yang kompleks untuk mengoptimalkan pelatihan jaringan saraf tiruan (Putra & Ulfa Walmi, 2020)(Wahyuni et al., 2018). Dalam hal AHLS peneliti menggunakan metode Algoritma Conjugate Gradient Polak Rebiere. Algoritma Conjugate gradient merupakan teknik perulangan sederhana dan kuat untuk menyelesaikan masalah minimalisasi linier dan nonlinier (Maria et al., 2023). Nantinya pola dengan Mean Square Erorr terkecil akan diambil untuk memprediksi data AHLS. Tujuan penelitian ini untuk memperoleh prediksi AHLS yang akurat dan dapat digunakan sebagai dasar untuk pengambilan keputusan dalam perencanaan pendidikan di Provinsi Sulawesi Barat.

Dalam penelitian ini, peneliti bertujuan untuk memprediksi angka harapan lama sekolah di Provinsi Sulawesi Barat, yang terdiri dari enam Kabupaten. Berdasarkan data Harapan Lama Sekolah untuk enam Kabupaten di Sulawesi Barat dari tahun 2017 hingga 2023, yang diperoleh dari Badan Pusat Statistik (BPS) Sulawesi Barat, tercatat bahwa pada periode 2017-2018, kenaikan angka terendah hanya terjadi di Kabupaten Polewali Mandar, dengan penambahan sekitar 0,1. Namun, setelah tahun tersebut, Kabupaten Polewali Mandar mengalami peningkatan yang signifikan, sementara kabupaten lain justru mengalami penurunan kenaikan angka harapan lama sekolah, terutama pada tahun 2022-2023. Kabupaten Majene, Kabupaten Mamasa, Kabupaten Mamuju, Kabupaten Pasangkayu, dan Kabupaten Mamuju Tengah hanya mengalami kenaikan sebanyak 0,1, sementara hanya Kabupaten Polewali Mandar yang mengalami peningkatan yang signifikan. Tidak adanya prediksi AHLS dapat menghambat perencanaan strategis dan alokasi sumber daya yang efektif. Oleh karena itu, perlu untuk memprediksi AHLS dengan akurasi yang tinggi. Ketepatan prediksi AHLS juga memberikan fondasi yang solid bagi pengambilan keputusan. Dalam memperkirakan kebutuhan infrastruktur pendidikan, alokasi anggaran, dan penentuan strategi pengajaran, prediksi yang akurat menjadi kunci untuk mengoptimalkan sumber daya yang terbatas. Oleh karena itu, kajian prediksi AHLS bukan hanya menjadi jendela ke masa depan pendidikan, tetapi juga fondasi untuk mengukur efektivitas kebijakan yang ada dan mengidentifikasi area yang memerlukan perbaikan khususnya di Sulawesi

Penelitian ini dilakukan berdasarkan referensi penelitian terdahulu dengan judul Penerapan Algoritma Conjugate Gradient Polak Ribiere Dalam Memprediksi Angka Harapan Hidup Di Jawa Timur,dalam penelitian ini peneliti menggunakan Pola diantaranya: 5-10-1, 5-55-1, 5-65-1 dan 5-75-1 dan memperoleh hasil model arsitektur 5- 55-1 yang merupakan model terbaik dengan MSE sebesar 0,00000078 (Maria et al., 2023). Penelitian kedua yang menjadi referensi penelitian ini berjudul Comparison Fletcher-Reeves and Polak-Ribiere ANN Algorithm for Forecasting Analysis dari penelitian ini disimpulkan bahwa metode Polak Rieber mendapatkan MSE terendah bernilai 0,00260749 dengan pola 6-10-1 (Hasibuan et al., 2022). Penelitian terakhir yang menjadi referensi penelitian ini berjudul Analisis Jaringan Saraf Dalam Estimasi Tingkat Pengangguran Terbuka Penduduk Sumatera Utara dengan pola arsitektur terbaik adalah 4-55-1 ,nilai MSE 0,55701127 dan akurasi 88%.


2. METODE PENELITIAN

Dataset penelitian yang digunakan adalah data Harapan Lama Sekolah pada Provinsi Sulawesi Barat dalam 5 tahun terakhir (2018-2022). Data adalah bersumber dari Badan Pusat Statistik Sulawesi Barat, seperti terlihat pada Tabel 1. Data Akan di proses menggunakan metode Algoritma Conjugate Gradient Polak-Ribiere. Model terbaik dinilai dari nilai MSE terkecil yang dihasilkan.

Harapan Lama Sekolah 2017-2023							
Kabupaten	2017	2018	2019	2020	2021	2022	2023
Majene	13.57	13.58	13.6	13.61	13.62	13.63	13.71
Polewali Mandar	13.01	13.02	13.05	13.06	13.38	13.39	13.48
Mamasa	11.41	11.58	11.74	12.05	12.36	12.53	12.54
Mamuju	13.13	13.14	13.18	13.19	13.24	13.25	13.26
Pasangkayu	11.37	11.59	11.66	11.93	11.95	12.06	12.07
Mamuju Tengah	11.57	11.71	11.92	12.23	12.53	12.65	12.66

Tabel 1. Dataset Harapan Lama Sekolah Sulawesi Barat

Kerangka kerja penelitian yang digunakan untuk penyelesaian masalah pada penelitian ini disajikan pada Gambar 1 berikut:

Gambar 1. Kerangka kerja penelitian

Berdasarkan Gambar 1 dapat dijelaskan bahwa langkah pertama yang dilakukan dari tahap penelitian adalah mengidentifikasi masalah ,kemudian mengumpulkan dataset penelitian (Berdasarkan tabel 1). Langkah selanjutnya adalah memisahkan dataset penelitian menjadi dua kelompok yaitu untuk data pelatihan dan pengujian. Tahap selanjutnya adalah normalisasi data latih dan uji menggunakan rumus persamaan (1) (Rianti et al., 2022)(Muhamad et al., 2022)(Silalahi, 2022).

$$x' = \frac{0.8(x-a)}{b-a} + 0.1 \tag{1}$$

Keterangan : x' adalah hasil data yang telah dinormalisasi, 0.8 dan 0.1 adalah nilai default rumus normalisasi, x adalah data yang akan dinormalisasi, a adalah nilai terendah dari dataset, dan b adalah nilai tertinggi dari dataset. Selanjutnya data latih yang sudah dinormalisasi dimasukkan ke dalam aplikasi Matlab R2011b untuk diolah. Pada aplikasi Matlab, *Conjugate gradient Polak-Ribiere* ditulis dengan "traincgp". *Conjugate gradient Polak-Ribiere* (traincgp) dapat melatih jaringan apa pun asalkan bobotnya, input jaringan, dan fungsi transfer memiliki fungsi turunan. Parameter default Conjugate Gradient Polak Rebiere adalah sebagai berikut (Maria et al., 2023) :

```
net.LW{1,1};
net.b{1};
net.b{2,1};
net.b{2};
net.trainParam.epochs=3000;
net.trainParam.show = 25;
net.trainParam.showCommandLine = false;
net.trainParam.showWindow = true;
net.trainParam.goal = 0;
net.trainParam.time = inf;
net.trainParam.min_grad= 1e-10;
net.trainParam.max_fail = 6;
net.trainParam.max_fail = 6;
net.trainParam.searchFcn = 'srchcha';
net=train(net,P,T)
```

Gambar 2. Parameter Default Conjugate Gradient Polak Rebiere

Setelah data dihitung menggunakan Matlab, kemudian melakukan evaluasi prediksi dengan mengumpulkan semua data yang telah dihitung dalam satu tabel dan membandingkannya. Nantinya pola yang memiliki nilai MSE terendah akan dipilih dan digunakan sebagai pola untuk prediksi data AHLS.

3. HASIL DAN PEMBAHASAN

5

0.1

0.171

0.177876

0.220354

Hal pertama yang dilakukan yaitu melakukan pembagian data. Data dibagi menjadi 2 bagian yaitu data latih (*training*) dan data uji (*testing*). Pada penelitian ini, peneliti menggunakan *dataset* tahun 2017-2022 sebagai data latih dan tahun 2022 sebagai *target*. Lalu untuk data uji dimulai dari tahun 2018-2023 dan tahun 2023 sebagai *target*. Kemudian data normalisasi dengan menggunakan rumus (1) yang dapat dilihat pada tabel 2 (data *training*).

	Normalisasi Data Training						
)	2017	2018	2019	2020	2021	Target	
	0.879	0.882301	0.889381	0.89292	0.89646	0.9	
	0.681	0.684071	0.69469	0.69823	0.811504	0.815044	
	0.114	0.174336	0.230973	0.340708	0.450442	0.510619	
	0.723	0.726549	0.740708	0.744248	0.761947	0.765487	

0.29823

0.404425

0.30531

0.510619

0.344248

0.553097

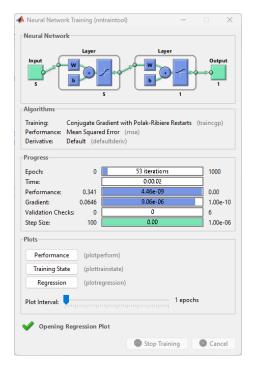
Tabel 2. Normalisasi data training

Untuk normalisasi data testing dengan rumus (1) dapat dilihat pada tabel 3 berikut :

0.202655

0.29469

Tabel 3. Normalisasi data testing


	Normalisasi data testing							
No	2018	2019	2020	2021	2022	Target		
1	0.85117	0.85869	0.86244	0.8662	0.86995	0.9		
2	0.64085	0.65211	0.65587	0.77606	0.77981	0.81362		
3	0.1	0.16009	0.27653	0.39296	0.45681	0.46056		
4	0.68592	0.70094	0.70469	0.72347	0.72723	0.73099		
5	0.10376	0.13005	0.23146	0.23897	0.28028	0.28404		
6	0.14883	0.2277	0.34413	0.45681	0.50188	0.50563		

Penelitian ini menggunakan 3 pola arsitektur untuk *training* dan testing pada prediksi angka harapan lama sekolah dengan menggunakan algoritma *Conjugate Gradient Polak-Ribiere*. Pola arsitekturnya yaitu 6-5-1, 6-10-1 dan 6-5-10-1. Selanjutnya adalah perhitungan dengan aplikasi Matlab, dan hasil dari perhitungan dapat dilihat pada tabel 4:

Tabel 4. Hasil perhitungan dengan aplikasi matlab

Hasil Perhitungan Pola							
Arsitektur	Arsitektur Epoch Waktu MSE Akurasi						
6-5-1	53	2 detik	0.000744	67%			
6-10-1	59	1 detik	0.004071	50%			
6-5-10-1	102	2 detik	0.001653	67%			

Berdasarkan tabel 4, dapat diketahui bahwa dari 3 model arsitektur yang telah dilatih dan diuji melalui aplikasi Matlab R2011b diperoleh 1 model arsitektur terbaik dengan menggunakan algoritma *Conjugate Gradient Polak Ribiere* yaitu model arsitektur 6-5-1 dengan *epoch* 53 iterasi, menghabiskan waktu pelatihan selama 00:02 detik dengan MSE 0.000744 dan akurasi yang diperoleh sebesar 67%. Model arsitektur terbaik yang diperoleh dari hasil perhitungan yaitu 6-5-1. Hasil pelatihan model terbaik disajikan pada Gambar 3 berikut:

Gambar 3. Hasil pelatihan model terbaik

Menggunakan arsitektur model terbaik, diperoleh hasil prediksi Angka Harapan Lama Sekolah di Provinsi Sulawesi Barat dapat dilihat pada tabel 5 :

Tabel 5. Hasil prediksi angka harapan lama sekolah Sulawesi Barat

Hasil Prediksi 2024-2027								
		Data Real Predil						
No	Kabupaten	2022	2023	2024	2025	2026	2027	
1	Majene	13.63	13.71	13.71	13.71	13.71	13.71	
2	Polewali Mandar	13.39	13.48	13.53	13.6	13.66	13.7	
3	Mamasa	12.53	12.54	12.81	13.15	13.47	13.66	
4	Mamuju	13.25	13.26	13.36	13.5	13.62	13.69	
5	Pasangkayu	12.06	12.07	12.45	12.93	13.37	13.64	
6	Mamuiu Tengah	12.65	12.66	12.9	13.21	13.49	13.67	

4. KESIMPULAN

Pola *Polak Ribier* dapat digunakan untuk prediksi angka harapan lama sekolah menggunakan *Software* Matlab dan Excel pola 3-5-1 adalah pola yang tepat untuk memprediksi angka harapan lama

sekolah dengan akurasi 67% dan MSE sebesar 0.000744. Hasil prediksi ini dapat menjadi patokan untuk pemerintah daerah setempat untuk melihat perkembangan dari sektor pendidikan di daerahnya, data ini juga dapat digunakan untuk pemerintah untuk memberikan kebutuhan infrastruktur pendidikan, alokasi anggaran, dan penentuan strategi pengajaran syang tepat kepada daerah-daerah yang tepat.

REFERENCES

- Candrawati, M., Imaningsih, N., & Wijaya, R. S. (2021). Pengaruh Upah Minimum, Harapan Hidup, Lama Sekolah dan Dependency Ratio Terhadap Jumlah Penduduk Miskin di Kabupaten Kebumen 2010-2019. *Jurnal Education and Development*, 9(3), 306–310. https://journal.ipts.ac.id/index.php/ED/article/view/2859
- Dewi, F. W., Magdalena, L., & Ilyasa, R. (2022). Jaringan Syaraf Tiruan Algoritma Backpropagation Untuk Prediksi Pemenang Mojang Jajaka Jawa Barat. *Jurnal Ilmu-Ilmu Informatika Dan Manajemen STMIK*, 16(1), 49–60. https://ejournal.stmik-sumedang.ac.id/index.php/infomans/article/view/269
- Hasibuan, E. H., Hendraputra, S., Achmad Daengs, G. S., & Saragih, L. (2022). Comparison Fletcher-Reeves and Polak-Ribiere ANN Algorithm for Forecasting Analysis. *Journal of Physics: Conference Series*, 2394(1). https://doi.org/10.1088/1742-6596/2394/1/012008
- Hayami, R., Sunanto, & Oktaviandi, I. (2021). Penerapan Metode Single Exponential Smoothing Pada Prediksi Penjualan Bed Sheet. Jurnal CoSciTech (Computer Science and Information Technology), 2(1), 32–39. https://doi.org/10.37859/coscitech.v2i1.2184
- Irawan, R. (2020). Peningkatan Harapan Lama Sekolah (HLS) Melalui Program Sosialisasi Pendidikan. *Jurnal Pasopati*, 2(2), 110–115. http://openjournal.unpam.ac.id/index.php/jsmu/article/view/2920https://ejournal2.undip.ac.id/index.php/pasopati/article/view/7537
- Mahya, A. J., & Widowati. (2021). Analisis Pengaruh Angka Harapan Lama Sekolah, Rata-Rata Lama Sekolah, Dan Pengeluaran Per Kapita Terhadap Indeks Pembangunan Manusia Di Provinsi Jawa Tengah. *Prismatika: Jurnal Pendidikan Dan Riset Matematika*, 3(2), 126–140. https://doi.org/10.33503/prismatika.v3i2.1180
- Maria, S., Silalahi, S., & Pujiastuti, L. (2023). Jurnal JISIILKOM (Jurnal Penelitian Ilmu Komputer) Penerapan Algoritma Conjugate Gradient Polak Ribiere Dalam Memprediksi Angka Harapan Hidup Di Jawa Timur. 1(1).
- Mayapada, R., Yanti, R. W., & Syarifuddin, S. (2022). Analisis Tingkat Kepentingan terhadap Faktor- Faktor yang Mempengaruhi Indeks Pembangunan Manusia di Indonesia. *Journal of Mathematics: Theory and Applications*, 4(2), 45–49.
- Muhamad, I. M., Wardana, S. A., Wanto, A., & ... (2022). Algoritma Machine Learning untuk penentuan Model Prediksi Produksi Telur Ayam Petelur di Sumatera. *Journal of Informatics* ..., *1*(4), 126–134. https://djournals.com/jieee/article/view/382%0Ahttps://djournals.com/jieee/article/download/382/283
- Muhammad, B. (2019). Implementasi Data Mining untuk Prediksi Standar Hidup Layak Berdasarkan Tingkat Kesehatan dan Pendidikan Masyarakat. *Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan)*, 2(2), 33–37. https://jurnal.tau.ac.id/index.php/siskom-kb/article/view/58
- Putra, H., & Ulfa Walmi, N. (2020). Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation. *Jurnal Nasional Teknologi Dan Sistem Informasi*, 6(2), 100–107. https://doi.org/10.25077/teknosi.v6i2.2020.100-107
- Rianti, E., Yenila, F., Ariana, A. A. G. B., Elva, Y., & Trisna, N. (2022). Artificial Neural Network Model for Forecasting Natural Disasters: Polak-Ribiere and Powell-Beale Comparison. *Journal of Physics: Conference Series*, 2394(1). https://doi.org/10.1088/1742-6596/2394/1/012010
- Silalahi, A. M. (2022). Perbandingan Kinerja Algoritma Polak-Ribiere dengan Powel- Beale untuk Prediksi Rasio Penggunaan Gas Rumah Tangga. *Jurnal Penerapan Kecerdasan Buatan*, 4(1), 61–71.
- Siska, F., & Rudagi, R. (2021). Analisis Ketimpangan Pendidikan pada Masa Covid-19 di Nagari Sisawah Kabupaten Sijunjung. *AL MA'ARIEF: Jurnal Pendidikan Sosial Dan Budaya*, *3*(1), 1–11. https://doi.org/10.35905/almaarief.v3i1.2032
- Sujana, I. W. C. (2019). Fungsi Dan Tujuan Pendidikan Indonesia. Adi Widya: Jurnal Pendidikan Dasar, 4(1), 29. https://doi.org/10.25078/aw.v4i1.927
- Wahyuni, J., Paranthy, Y. W., & Wanto, A. (2018). Analisis Jaringan Saraf Dalam Estimasi Tingkat Pengangguran Terbuka Penduduk Sumatera Utara. *Jurnal Infomedia*, 3(1). https://doi.org/10.30811/jim.v3i1.624